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Just after formation, optical fibers are wetted stably with acrylate at capillary numbers

routinely exceeding 1000. It is hypothesized that this is possible because of dissolution

of air into the liquid coating. A lubrication/boundary integral analysis that includes gas

diffusion and solubility is developed. It is applied using conservatively estimated solubility

and diffusivity coefficients and solutions are found that are consistent with industry
practice and with the hypothesis. The results also agree with the claim of Deneka, Kar

& Mensah (1988) that the use of high solubility gases to bathe a wetting line allows
significantly greater wetting speeds. The solutions indicate a maximum speed of wetting

which increases with gas solubility and with reduction in wetting-channel diameter.

1. Introduction

Immediately after formation, optical fibers, in order to improve their resiliency and
refractive properties, are wetted and then coated by running through a polymer bath.

This wetting typically takes place at capillary numbers Ca = Uo#l/o" of O(1000), that is,

at wetting speeds U0 of about 1000 to 2000 centimeters a second, surface tensions e of

about 20 to 30 dynes/cm, and liquid viscosities Pt of about 20 to 40 poise (Dimitropoulos

et al., 2000; Ravinutala et al., 2000; Jochem & Ligt, 1985; Lyytik_inen, 1998).

Optical fiber wetting is somewhat like plunge-tank wetting; in both the material being

wetted is drawn through a surrounding free surface. However, with optical fibers wetting
takes place in a very narrow orifice - the entrance channel or die of the coating apparatus

- that is typically only 300 to 600 microns in diameter (:lochem & Ligt; Dimitropoulos

et al.; Ravinutala et al.). The fiber itself has a diameter of about 125 microns. The gap
between the fiber and the orifice wall is thus typically about 100 to 300 microns. The

drag of the fiber on the liquid is resisted by the application of high pressures that force-

feed the liquid up into the orifice. Because of the fiber's high speed and the relatively

high viscosity of the fluid, pressure gradients in the entrance channel are on the order
of atmospheres per millimeter. It appears that proper shaping of the inlet directs these

pressures to the wetting line so that air entrainment can be resisted.

These high pressure gradients are undoubtedly helpful in resisting air entrainment.
The small size and axisymmetry of the fiber may also be helpful. Simpkins & Kuck

(2000) reported a critical capillary number (the maximum Ca for successful resistance

of air entrainment) of 2.1 for small-diameter fibers entering unpressurized glycerin. By

comparison, for flat tapes in plunge-tank experiments critical Ca is less than 1. For

pressurized orifices Simpkins Sz Kuck have been able to observe and photograph successful
wetting at Ca greater than 20 (private communication).

However, the success of high speed optical fiber wetting cannot be entirely explained in

terms of global quantities. Because of the high wetting speed the liquid dynamic contact

angle must be at or near 180 °. As will be discussed below, the potential exists for very
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high and destabilizing pressures to be built up in the receding gas phase near the wetting

line. Some theory is needed for how these small-scale but very large stresses are relieved
or resolved.

A hint of how this is accomplished is given by the frequent practice in the industry of

bathing the wetting line with high solubility gases. The efficacy of this was first claimed

in a patent assigned to Corning Glassworks (Deneka, Kar & Mensah, 1988). The gas
recommended and claimed in the Corning patent was carbon dioxide, which is typically

3 to 5 times as soluble in polymers as is air. Jochem _ Ligt (1985) experimented with

CC12F2, which is even more soluble in polymers than CO2, and showed great improvement

in coating speed and quality. With CC12F2 they demonstrated bubble-free coating at

1250 centimeters per second. With air, using the same wetting die, bubble entrainment

occurred at 300 era/see (Jochem & Ligt, 1987).

The hypothesis indicated from these claims and results is that dissolutiQn of_

t_fluid serves to si nificantly relieve i h as ressures, _hereby facilitating high_,
Deed we.k_g. I.n orderflo examine this h_ypothesis_ this paper discussess_
iubrication/boun'_'_rv_nteKral anai_sis t'l_at, quantifies _as solubility effects. The analysis

approximates the dynamic contact angle as being 180 °, giving a gas column shape that

forms a half cusp between the wall and the liquid.

Gas properties that could have important effects on high-speed wetting stability include

1) viscosity, 2) compressibility, 3) solubility in the liquid, 4) diffusivity in the liquid, 5) slip
along the fiber, 6) Knudsen diffusion of momentum, significant for gas column thickness

less than about 300 nanometers, and 7) increased local gas solubility when the gas phase

is confined to a very small domain (nanoscale). Properties of the liquid phase include 1)

Viscosity, 2) surface tension, 3) van der Waals attractions between the liquid and the solid

and 4) decrease in the surface tension as the liquid aproaches the solid. The main body
of this paper considers the first four gas properties and the first two of the liquid. An

appendix briefly discusses the modeling and effects of most of the remaining properties.

Also, Jacqmin (2001) gives a more complete description of modeling of the gas phase.
All the properties relegated to the appendix are stabilizing. Their neglect in the main

article thus permits a relatively streamlined analysis of the "worst case".

In spite of the huge practical and fundamental scientific interest of high-speed wetting,
theoretical attempts aimed at understanding it are largely lacking. An early significant

result is by Benney & Timson (1980), who derived an eigenfunction solution for 180 °

wetting of a solid. Their solution gives the height. H(x) of the liquid-gas interface (the
distance of the interface from the fiber or, equivalently, the gas-column width) as behaving

like Ix] rn+l, where rn, the eigenvalue, equals -arctan(2Ca)/Tr._ As Ca goes to oc, m

approaches 1/2 from above. The solution neglects the effect of gas stresses.

There has been more work on free-surface cusp flows (which can be viewed as "roll-on"

liquid-liquid wetting). Joseph et al. (1991), showed that these have the same eigenfunc-

tion solution as the one found by Benney & Timson. Shortly after, Jeong & Moffat (1992)
derived exact solutions for near-cusp flows using complex-analysis techniques. These so-

lutions also neglect gas and wetting stresses. At micro- and mesoscale distances from

the cusp these solutions approximately match to the Benney & Timson eigenfunction.

Jeong & Moffat showed that the coefficient of the eigenfunction is determined by the
outer length scale. In their case this scale was the depth of a vortex dipole that drove

their flow. At the nanoscale their solutions show a slight rounding of the cusp, which

eliminates the singularity in surface tension forcing that would otherwise seem to occur

(a delta function with amplitude 2_).

This corrects a sign error, introduced at their equation (2.12) and carrying on to (3.9).
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The difficulty with either cusp or roll-on flow is that the pressure in the displaced

gas phase can become very high, leading to instabilities and gas entrainment. The gas

phase is swept into the cusp region by the movement of the fluid and of the solid being
wetted. Since most of the gas has to return, a Poiseuille-like flow is established with

pressure gradients like 1/H 2. If the flow were precisely cusp or roll-on, and if the gas

were completely insoluble in the fluid and obeyed the Navier-Stokes equations, then the

gas pressure would be fiercely singular; for the Benney & Timson solution it would be
like x -(1+2'_). This would dwarf the viscous and surface-tension-related stresses in the

liquid. Shikhmurzaev (1998) speculated that this problem might be relieved by Knudsen

diffusion. However, this also leads to a singularity (like x -m, see Jacqmin). Nor does slip
along the wall solve the difficulty, unless slip is also allowed along the liquid-gas interface.

Eggers (2001) recently conducted a lubrication/boundary integral analysis of insoluble

two-phase cusp flow assuming, following Jeong & Moffat, that the cusp is actually slightly
rounded. He estimated that failure occurs for _;3/4 :> r, where )_ is the viscosity ratio

Pg_/Pliq, _ is the curvature at the rounded cusp, and r is a to-be-determined O(1)
quantity. Since, from Jeong &: Moffat, _ -- c] exp(2 7rCa)++where Cl is O(1), the maximum

capillary number for cusp stability would be

Cam_x 2 In 1
3---_ _ ÷ O(1) (1.1)

This is way too low to account for the stability of optical fiber wetting.
Other industrial processes besides optical fiber manufacturing are reported to allow

high Ca coating. For example, curtain coating (where a metered stream of liquid falls
from a height above a moving substrate and then coats the substrate) allows wetting up

to a Ca of about l0 (Kistler, 1993, p. 343). It seems certain that the additional force and

pressures associated with the fall of the liquid act to allow the observed higher wetting

speed. Recent experiments by Blake, Bracke & Shikhmurzaev (1999) have quantified

some aspects of these effects. Kistler (1993, pp. 339-346) gives a thorough review of the
various possible macro- and micro-scale phenomena that may affect air entrainment and

wetting stability.

The following first derives, for given H(x), an integro-differential equation for the

pressure pg in the gas phase. This uses a lubrication approximation for the gas flow and
a Green's function analysis for the diffusion of the gas into the liquid. H(x) is then found

in terms of an integral of the stresses on the liquid interface. This part of the analysis is

linearized about a flat interface. Since the interfacial stresses can be expressed in terms of

H and pg the system of two equations is closed. We find that there are both minimum and
maximum speeds for which successful wetting is possible. For high capillary number these
cutoff speeds are expressible in terms of a function of two nondimensional parameters.

The equations are applied to the regime typical of optical fiber coating. It is shown that,

indeed, gas solubility significantly mitigates gas pressure and that, in agreement with

the claim of Deneka et al., the use of higher-solubility gases makes high wetting speeds
easier to achieve.

2. The gas flow

We consider the flow of an isothermal, soluble, ideal gas in a "half-cusp" region bounded
by a solid wall located at y = 0 and a liquid interface at y = H(x). The half cusp is in

x :> 0 and ends at the wetting line at x = 0, see figure 1. The bounding surfaces are

_t This uses the definition of Ca employed by Joseph et al., which is the same as used in this
paper and 16 times that of Jeong & Moffat's.
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Figure 1. The wetting geometry, x is the horizontal coordinate (increasing toward the

right), y the vertical. The wetting line is at x = 0, y = 0. The gas is thus confined to

x > 0. The solid is moving to the left with velocity -U0.

quasi-parallel, allowing a lubrication flow analysis for the gas. The solid is moving at

velocity -U0 and the liquid motion is approximated as also being -U0. The lubrication

equations for the gas flow are

Oupg Ovpg _ 0 Op___g
= pg0;: , pg=Pg(X) (2.1)

Ox + Oy ' Ox

where u and v are the gas x- and y-direction velocity components, pg is the gas pressure,

and #g is the gas viscosity. The first equation is continuity, the second, x-momentum
The convection-diffusion equation for the gas in the liquid can be written as

voOC, (o2c, (2.2)
- -bV= v \--_-_+ -yy)

Ci is the gas concentration in the liquid and D is the diffusivity. Cl is assigned units of

pressure.
The boundary conditions at the liquid-gas interface are 1) no-slip, u = -U0, 2) phase

equilibrium, C_(H +) = Spg(H-), where S is the Henry's law solubility coefficient for

D OC1 H+ Vliq)Pg H-the gas in the liquid, and 3) equality of normal fluxes, - _ = (vg_ -

Boundary conditions at the gas-wall interface are 1) no normal velocity and 2) no-slip.

The gas is at atmospheric pressure, designated P_o, at x = +c_. For simplicity, it will be
assumed that the fluid is saturated with the gas (Ci equals :7 times p_) at x = +oo and

y = +oo.
Integration of the continuity equation from 0 to H(x) gives

OUavHpgox -- (Vgas- Vinterface)Pg H- = VdiffusionPg H- _-" -DOCI'_Y H+ (2.3)

U_v = -H -1 f/ udy. From the momentum equation,

1 H 2
Uo - Uav - - aPE (2.4)

pg 12 Ox

Substituting (2.4) into (2.3) yields

0-7 577£Pg5;) + _ u0sspg =- 0y ,_+
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In the convection-diffusion equation z-transport is dominated by convection. The x-

direction diffusion term can be neglected and the equation reduces to

u OG 02G-- (2.6)
- o--_-x = Dg_U2

cOCl/Oy also obeys this equation. A Green's function solution is available (Carslaw &

Jaeger, 1959t) that expresses OCJOy in terms of the boundary values of 02C_/ay_:

OC, _ _o j[¢_ 02C_1 __ dx' (2.7)Oy OY---U lu=tt+ e 4D(_'-.) V_ -- x

This, from (2.6), can be rewritten as

oc, ,-- = -- e 4D(_,-_) __ (2.8)
ay V _ % Ox' I,,=.+ v"P- x

Equation (2.8) can be used to find the flux at the interface in terms of the cusp gas

OCl _=H+ = Sdpg and specializing the equationpressure. Multiplying by D, using _x t dxr _=H-

toy=H + gives

D OCI _D_ f°° dpg dx'_-y .+ = S dx' .- v'_- x
(2.9)

Applying this to equation (2.5) then gives

__d/" H 3 dpg_ d [ , .f-D-_[°_dpg dx'
+ tU°Hpg) =-SV 7r J,: --- (2.10)

a one-dimensional integro-differential equation for the steady-state pressure of the gas in

the half cusp.

3. The liquid flow

nT?ae flow in.thehqu," " "disdakTattob: _toketflO_in_ _t; velocity is-U0.Li i_m_ auuu_ -uO r the free surface

is,

uo oH
- _ = vl (3.1)

where vz is the normal liquid velocity at the interface, vz is related to the interracial

stresses by the boundary integral

1 In Ix' - xlfydx' (3.2)
VI -- 27r#1 oo

(Pozrikides, 1992) where fu is to first order the interfacial normal stress minus the at-
mospheric pressure. To this order shear stress contributions to vl are negligible. Taking

the first derivative of (3.2) gives

Or(_ 1 f_o x,fU dx' (3.3)Ox 27r/_1 oo x

t See equation (9) in _2.9. The t occuring in the argument of the exponential function should
be T.
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a gilbert transform of fy/2pl. It can be inverted to

fy = .... 2#1/ff ° Ovl dx' (3.4)
71" oo Ox] xt -- _

and, since vi in x < 0 is 0, specialized to

f_ = 2._ F ° or, /x_' (3.5)
Jo Ox' x'- z

f_ = aH_ + pg - poo and Ovl/Ox = -UoH_. Equation (3.5) can thus be arranged in
the form of an integral equation for H_.x forced by pg:

aH_ 2#l_U0r_o °° x'H_'_'-x dx' = poo - pg (3.6)

The equation is linear with a singular Cauchy kernel. The solution for H_, as discussed

by Mikhlin (1957, pp. 126-131), is

d_Hdx:_ (pgl +- 4Ca_pOo)/_ 12Ca/_+4Ca: x"-_ f0 _ (z')_-_x,_7 (Pg(/)-P_)dx'+Coozm-1 (3.7)

Equation (3.6) corresponds to Mikhlin's equation (1), p. 127, (3.7) corresponds to (23).

Coo is a free parameter. Coox m-l, where m = -arctan(2Ca)/_, is the homogenous

solution to the unforced problem. It is the eigenfunction first found by Benney & Timson.
The arctan branch is taken such that m varies from 1 (as Ca ---+0) to 1/2 (as Ca --+ oo).

This is the only branch that, in equation (3.6), gives a finite integral.

The advantage of equation (3.7) is that pg - poo is significant only in the microscale
region near the wetting line whereas H_ in (3.6) decays very slowly. As x --_ oo the

first term on the right hand side of (3.7) decays like x -(1+2"_), the second like x m-2 and

the eigenfunction term like x m-1. Thus the Benney &= Timson eigenfunction becomes
dominant and gives the macroscopic shape of the fluid interface. Coo is therefore the pa-

rameter that allows connection of the macroscale appearance of the flow to its microscale

behavior. Ultimately, as discussed by 3eoiag & Moffat (p. 11, their variable 6), its value

is related to the outer length scale set by the flow geometry. Since Pg is nonsingular, H_
also behaves like x m-1 as x ---* 0. The coefficient of x "-I there is

2Ca/_a _o _co= C_o 1+ 4c_ (_')-" (p_(_')- p_o)_' (3.s)

4. The dimensional equations. Ranges of parameters

The coupled system of integro-differential equations is thus:

d f H 3 dpg'_ . D/-D--_o[oodpg dx'
+ : j. (4.1)

d_H (pg- poo)/_ 2Ca/_ ,,,_,f= (_')'-" (pg(_')-poo),tx'+Coo_m-' (4.2)
-dx 2 - l + 4Ca _ -_x Jo x'- z

The boundary conditions for the equations are that pg is finite and H = H_ = 0 at x = 0

and that pg equals poo at x = oo. The far-field behavior of pg is

dpg ,.,, 12pgUO 12pg L (4.3)
dx -- H 2 + Hapg-
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where L is the total rate of dissolution of air into the fluid, the integral from 0 to oo of

the right hand side term in (4.1). It is found as part of the solution. The integral from 0
to _o of the first two terms of equation (4.2) is precisely 0. (This result can be shown by

converting the integral in x in the second term to a Mellin transform in x/x_.) Because

of this the leading order behavior of H at _ is of the form C_x'n+l/m(rn + 1) plus a
constant times x m.

The equations have seven independent parameters, Uo, pg, poo, Sv_, _r, #l (in Ca), and

C_ We are primarily interested in the effects of varying S, C_, and U0. In optical fiber

coating the other parameters show less significant variation. A single set of representative

values of #g, p,, D, o', and poo has therefore been used for all dimensional calculations.

In cgs units, this set is #g = .00019 poise, Pl = 30 poise, D = .00003 cm2/sec, 0- = 30
dynes/cm, and poo = 1.01 x 106 dynes/era 2 (one atmosphere). Durrill & Griskey (1966,

1969) give D for a number of different gases diffusing in various molten polymers. The
value chosen for these calculations is in the middle range of their data.

Durrill & Griskey also give gas solubilities. From them, carbon dioxide is typically

about 4 times as soluble in molten polymers as is air. A typical value of S for air is about

.1, for CO2 about .4.t Both cases will be considered.

Following the results of Jeong & Moffat, it will be assumed that C_ is approximately

equal to the inverse square-root of the lengthscale of the outer geometry. In their case
the outer length scale is vortex dipole depth d and they find a Coo of 1.225/v_. The

relevant outer length scale for optical fiber wetting is the gap between the optical fiber

and the wetting channel's wall. This is typically 100-300 microns, indicating a range for

C_¢ of about 5 to 10.

Optical fiber coating speeds mentioned in the patent literature range from about 300

cm/sec to over 2000. Corresponding capillary numbers range from over 100 to over 2000.
The industry norm is in about the middle of this range. These very high capillary numbers

will allow some useful simplification of the analysis.

5. Existence of solutions

To be physically valid, solutions for H must be positive, but pg, which is also necessarily

positive, tends to make H_ and thus H negative. At the wetting line, negative H_ would
immediately cause H to be negative. Co must therefore be greater than 0 and so, from

(3.8), it must be true that

2Ca/_rc fo _C_ > 1 +4Ca _ (x')-m(pg(x ') -poo)dx' (5.1)

For large Ca a cutoff value of Coo exists below which there is no solution. This value is

a function of the seven equation parameters.

At large Ca, for given ttg, p_, S_, (r, tq, and Coo, there can be either no U0 that
allows solutions or a range of solutions from a minimum U0 (a lower U0 cutoff) to a

maximum (the upper cutoff). Solutions also exist as Ca ---* 0 in a small region near and
below Ca = 1.

A simple class of solutions exists for large enough Coo. If H were of the form ax z then

the shape ofpg and its maximum value would be independent of c_. This is because a can
then be transformed out of (4.1) by the substitution x --* a-1/(2Z-1)x. At large Coo H

approximates this form because the third term on the right hand side of (4.2) dominates

t This paper uses a somewhat different definition of the coefficient, gas density in the polymer
divided by the density of the gas, than do DurriH & Griskey. This increases the coefficients given
by Durrill & Griskey by a factor of about 1.6.
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the first two. As Coo --_ co the first two terms on the right hand side of (4.2) stay finite

and become independent of Coo. (4.1) and (4.2) thus partially decouple.

The lower U0 cutoff occurs where pg - p_ is small but at high enough velocity so that

the coefficient of the integral in (4.2) is still O(1/Uo). At small pg - poo (4.1) can be

simplified to

\12 g d, ) uoH d,' U:
(5.2)

p_ V 7r Jx x

Scaling H like Co_L_ +1, where L_ is the inner length scale, and finding L_ by balancing

the first and third terms in (5.2) and then the pressure scale p_ by balancing the second

rr2/3 The integral term in (4.2) scales likeand third, one finds that pg --Pc_ scales like v 0 .

(pg --p,_)/Uo and therefore like U_ 1/S, thus indicating the cutoff. The essential point
is that the cutoff occurs in a region where a diminishment in U0 causes a less rapid

diminishment in pressure forcing and so, see equation(3.6) with the comparatively small

_rH_x term neglected> the perturbation to H caused by the pressure forcing increases.

6. Nondimensionalization. Specialization to Ca >> 1

The seven parameters can be reduced to three through nondimensionalization. Setting

x ---+L_ , H--+ CooL_n+affI , pg ---+p_fig (6.1)

where

s (6.2)L_+II 2 = _ ' P_= S2D

(4.1-4.2) become

d ['ffI 3_ d_gXt d ([Ipg)- 1 i_ _° dpg d2' (6.3)

d2B r(fig-poo/p,) 2rCal_ m 1 foe (_,)l-m poo)dS,q__m_ '--= 2_ - ------ (/5g(2')-- (6.4)
d_:2 1 + 4Ca 2 1 + 4Ca Jo x_ - x p_

The resulting nondimensional parameters are Ca, p_/p_ and F = p_/o'CooL_ -1. The

boundary condition for fig at _ = +oo becomes that/_g approaches p_/p_. Since C_ has
been transformed to 1 the problem of finding its cutoff value has been changed to finding

the boundary of the region in (Ca,p_/p_, F) for which solutions exist.

As Ca --, _, ra ---, 1/2 and the lengthscale L, becomes _ . The first term on

the right hand side of (6.4) is O(1/Ca) compared to the second and can be neglected.

Equation (6.4) reduces to

d2Hd_22 27rl #g{CL__._]]'tl \ Uo _ 3/4x- 1/2 L°° (Al)S/](fig(Xt)-T,t-x- --PC°)dxtq-Yc-1/2ps (6.5)

while (6.3) remains the same. The number of nondimensional parameters in the equations

has been reduced to two, (I.Zg/2rr#l)(Uo/C_S2D) 3/4 and pcc/Ps = S2DPc_/PgU_o. Find-

ing the solution region is now a matter of finding the cutoff value of the first parameter
as a function of the second.
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[ S2Dp_/gsU_ [10 -5 110 -4 [10 -_ [10 -= ] .1 [ ]. [ lo. I loo. [

I(_s/2_m)(Uo/C_S=p) 3/4 ]4.560 [2.53, [1.361 [ 0.6s7 [0.314 [0.129 1o.04s [0.0]6 I

TABLE 1. Cutoff values of (#g/2_#I)(Uo/C_S2D) 3/4 for given S2Dp_/',gU_.

7. Results

The equations have been solved numerically using spatially varying node-point separa-

tions. For dimensional calculations, grid spacing was typically set to nanometer lengths

near the wetting line, up to micron lengths in the outer region. A similar variation in spac-

ing was used for nondimensional calculations. The derivatives in (4.i) were discretized

using central differences. The integral was solved by approximating dpg/dx' as piecewise
constant. The result can be integrated analytically. The integral in (4.2) was approxi-

mated by taking (pg(z')-poo)(x') 1-m as piecewise linear. The resulting integrand is then
also analytically integrable. Convergence checks were carried out by varying the number

of points, grid stretching parameters, and the length of the calculated region. The nu-
merical solution at the outer calculated point was fitted to the analytic far-field solution.

Equation (4.1) can display singular behavior at x = 0. This was avoided by solving it

iteratively using a time-like approach. A Opg/Ot-like term was placed on the equation's
left hand side. The equation's second derivative then acts like a diffusion operator and

convergence to a finite solution is obtained without much difficulty.

Table 1 gives calculated cutoff values of (#g/27r#l)(Uo/C_S2D) 3/4 as a function of

S2Dpoo/pgU_. The relationship between the two is well approximated by s = -.89 -
.41r- .023r 2, where s and r are logs to the base 10 of the two variables. Figures 2 and 3

give some dimensional results drawn from this approximation. They show cutoff values

of U0 as a function of Coo for air and for CO2. The region of existence of solutions is

between the upper and lower cutoffs. The values ofpg,/.q, D, cr, and poo that are used

are given in §4. The minimum value of Coo for CO2 is 2.23, with U0 equaling 508 cm/sec.
The minimum value of Coo for air is 4.47, with U0 of 116.

Dimensonal calculations were also made. Of prime interest is maximum pressure de-

veloped, to check on the assumptions of gas ideality and Henry's Law, and of amount

of gas absorbed by the liquid, to check on the possibility of later nucleation of bubbles.

Calculations were made for U0 = 1000 cm/sec for Coo equal to 6, 8, and 10. Using air, the
maximum gas pressure developed is, respectively, 147, 181, and 196 atmospheres. The

region of high pressure is small; for Coo = 6, for example, pg > 100 atmospheres extends

to only 75 nanometers from the wetting line, pg > 10 extends to about 300 nanometers,

and pg - poo > 1 extends to about 1.2 microns. The maximum pressure decreases as Coo
approaches cutoff, because of elongation of the air half-cusp and the resulting increase in

liquid surface area that the gas can dissolve into. Consistent with this, the volume flux

of air into the coating decreases with increasing Coo; it is 6.8 microliters a second per

centimeter (in the direction perpendicular to x and y) for Coo = 6, 5.9 for Coo = 8, and

5.3 for Coo = 10 (volumes at atmospheric pressure and 20 ° C). Since the fiber is moving

at 1000 cm/sec this is equivalent to absorbing a layer of air only 53 to 68 nanometers
thick. If there is later nucleation of bubbles they would be nanoseopic in scale.

The same calculations for CO2 yield 30.7, 31.8, and 32.3 atmospheres, with CO2 fluxes

into the coating of 7.74, 6.67, and 5.95 microliters per Second-centimeter. The case Coo =
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Figure 2. Cutoff values of U0 as a function of C_, for air. S = .1, #g = .00019 poise,

pl = 30 poise, D = .00003 em2/sec, o" = 30 dynes/cm, and poo = 1.01 x 106 dynes/cm 2.
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Figure 3. Cutoff values of U0 as a function of Coo, for CO2. S = .4, #g = .00019 poise,
#1 = 30 poise, D = .00003 cm2/sec, _r = 30 dynes/cm, and poo = 1.01 × 106 dynes/cm _.

4 gives a maximum pressure of 28.2 and a flux of 9.58. The use of CO2 instead of air

greatly lessens the maximum gas pressure and allows a much smaller Coo.
Figures 4 and 5 show pressure and gas solution rate as functions of x. The calculation

is for air with U0 = 1000 cm/sec and Coo = 5.3. The flow is close to the cutoff point.
Of interest is that the pressure reaches a maximum away from the wetting line. The

rate of dissolution is also a maximum there. Very near the wetting line the gas flow is

determined by a balance between (4.1)'s second term and its integral. The gas in this

region is in nearly plug flow.

8. Conclusions

This paper has attempted to explain the phenomenon of very high capillary number

wetting that is common in the optical fiber coating industry. The usual model of wetting,
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Figure 4. Gas pressure as a function of x for air with U0 = 1000, C_o = 5.3.

-3.0

500

o 400
eO

_,_ 300

= 200
0

._

a loo

I I I

0 r I L

-7.0 -6.0 -3.0-5.0 -4.0

logl0 x (cm)

Figure 5. Gas solution rate as a function of x for air with Ue = 1000, Coo = 5.3. In
milliliters at standard temperature and pressure per sec cm _.

in which the two fluid phases are completely insoluble, points inevitably to wetting failure

at an O(1) capillary number (Eggers). However, standard practice in the optical fiber

industry is to wet and coat fibers at Ca = O(1000). It has been proposed here that
stresses in the receding gas phase that would otherwise be destabilizing are significantly

ameliorated by solution of the gas into the wetting liquid. The resulting model of wetting

dynamics yields an adjustable macroscopic parameter that has a cutoff value below which
there can be no solution. The calculated value of this cutoff is consistent with common

practice in the sizing of optical-fiber-coating entrance dies. Maximum and minimum

wetting speeds have been found as a function of gas and liquid properties and wetting-
channel size. Results indicate that reduction in wetting-channel diameter allows higher

wetting speeds. Results also agree with the claim (Denka et al.) that it can be very

advantageous to bathe a wetting line with high-solubility gases.



12 ._ D. ]acqmin

I am very gratefuI to Dr. Enrique Rams of the National Center of Microgravity Re-
search for his help and for many interesting and useful discussions.

Appendix A. Slip, Knudsen diffusion, and van der Waals forces

Slip and Knudsen diffusion effects are discussed in Jacqmin. With wall slip, equation

(2.4) becomes

1H2 (_ H _ i) c_ps (A.I)Uo - U_,, -
fig 2 H + )_ + H + _ Ox

The wall slip length _ is roughly equal to the mean free path. This is about 70 nanometers

at standard temperature and pressure and is proportional to 1/pg. There is no slip along

the liquid (the two fluids intermingle) and so U0 - U_v continues to be proportional

to H 20pg/_x. Flux due to Knudsen diffusion, which becomes important below about

H = 5A, is proportional to H_pg/Ox. Both effects produce a significant amelioration of
stresses in the gas. The reduction in maximum pressure is over 50%. This results in turn

in about a 50% reduction in gas absorption by the liquid.
Van der Waals forces are normal to the interface and thus can be included in the model

analysis. From Israelachvili, the van der Waals forces are equal to the rate of change with
H of the sum of the liquid and solid surface tensions (the excess free energies). They can

be expressed in the form

F= 6_r(H+Ho) 4 -- \dH ÷ dH,] (A.2)

For non-polar liquids H0 should be set to 1.65 angstroms (Israelachvili, 1991). When H

is greater than about one nanometer F can be set to the more common form -A/6_rH 3.
A is the Hamaker constant. The actual change in surface tensions (as versus the first

derivative of their change) becomes important only very close to the wetting line; for H

equal to one nanometer, aL is still about 97% of its value at oo.

Calculations have been performed including both van der _Taals forces and surface
tension variation. The variation in surface tension turns out to be unimportant. Van der

Waals attractions are stabilizing, partly in the same way as is large C_, in that they

cause an increase in H_ in the vicinity of the wetting line. They also, of course, resist

the gas pressure. The importance of this is currently under study. Early results suggest
that van der Waals forces may operate at too small a length scale to play a major role

in setting either interface shape or the cutoff value of C_.

REFERENCES

BENNEY, D. J., _ TIMSON, W. J. 1980, The rolling motion of a viscous fluid on and off a rigid
surface. Stud. App. Math. 63, 93-98.

BLAKE, T. D., BR.ACKE, M., _ SHIKHMURZAEV, Y. D. 1999, Experimental evidence of nonlocal
hydrodynamic influence on the dynamic contact angle. Phys. Fluids 11, 1995-2007.

CAR.SLAW,H. S., _ JAEGER., J. C. 1959, Conduction of Heat in Solids. Oxford University Press.
DENEKA, C. W., KAa, G., &_MENSAH, T. O. 1988, Method for Coating Optical Waveguide

Fiber. U. S. Patent 4,792,347.
DIMITR.OPOULOS, C., CHIPPADA, S., GR.ALD, E.) _u: KULKARNI, J. 2000, CFD Simulation of

Optical Fiber Coating Flows. Proceedings of the 49th International Wire and Cable Sym-
posium.

DUR.RILL, P. L., ,_ GR.ISKEY, R. G. 1966, Diffusion and so]ution of gases in thermally softened
or molten polymers, Part I. AIChE Y. 12, 1147-1151.



Very, very fast welling 13

DURRILL, P. L., & GRISKEY, R. G. 1969, Diffusion and solution of gases in thermally softened

or molten polymers, Part II. AIChE J. 15, 106-110.

ECGERS_ J. 2001, Air entrainment through free surface cusps. Phys. Bey. Let. 86, 4290-4293.

ISRAELACHVILI, J. 1991, IntermoIecular and Surface Forces. Academic Press.

JACQMIN D. 2001, Very fast wetting in the presence of soluble gases. In Proceedings of the

IUTAM Symposium on Free Surface Flows (ed. Y. D. Shikhmurzaev), pp. 134-i51. Kluwer
Academic Pubfishers.

JEONC_ JAE-TAcK & MOFrAT_ H. K. 1992, Free-surface cusps associated with flow at low

Reynolds number. J. Fluid Mech. 241, 1-22.

JOSEPrt, D. D., NELSON, J., RENARDY, M., _c RENARDY Y. 1991, Two-dimensionaJ cusped

interfaces. J. Fluid Mech. 223, 383-409.

JOCHEM, C. M. G., L; VAN DER LIGT, J. W. C. 1985, Method for cooling and bubble-free

coating of optical fibres at high drawing rates. Electronics Let. 21,786-787.

JOCHEM, C. M. G., & VA_,-DER LIGT, J. W. C. 1987, Method of and arrangement for coating

a fibre. U. S. Patent 4,704,307.

KISTLER, S. F. 1993, Hydrodynamics of wetting. In Wettability (ed. J. Berg), pp. 311-429.

Marcel Dekker, Inc.

LYYTII(XINEN, K. 1998, Numerical Modeling of Optical Fiber Coating Process. FINNOVA, avail-

able at http://www.csc.fi/ttn/optifiber.html.

MIKHLIN_ S. G. 1957 ]ntegral Equations. Pergamon Press.

POZRIKIDIS, C. 1992, Boundary Integral and Singularity Methods for Linearized Viscous Flow.

Cambridge University Press.

RAVINUTALA, S., RATTAN, K., POLYMEROPOULOS, C., L; JALURIA, Y. 2000, Dynamic Menisci

in a Pressurized Fiber Appficator. Proceedings of the 49th International Wire and Cable

Symposium.

SHIKHMURZAEV, Y. D. 1998, On cusped interfaces. J. Fluid Mech. 359,313-328.

SIMPKINS, P. G., & KucK, V. J. 2000, Air entrapment in coatings by way of a tip-streaming

meniscus Nature 403, 641-643.


